# ON THE INVOLVEMENT OF P<sub>i</sub>-BINDING PROTEINS IN P<sub>i</sub>-UPTAKE IN THE YEAST CANDIDA TROPICALIS

## R. JEANJEAN, A. ATTIA, T. JARRY\* and A. COLLE\*

Laboratoire de Physiologie cellulaire and \*Centre d'immunologie 70, route Léon Lachamp, Faculté des Sciences de Luminy, 13009 Marseille, France

Received 2 January 1981

## 1. Introduction

Characterization and partial purification of  $P_i$ -binding proteins released by osmotic shock from *Candida tropicalis* have been reported [1]. Protein  $F_1$  (characterized by a low affinity for  $P_i$ ) was obtained in a highly purified state whereas protein  $F_2$  (characterized by a high affinity for  $P_i$ ) was slightly contaminated by  $F_1$ . To obtain data on the physiological significance of the phosphate binding proteins, antibodies  $F_1$  and  $F_2$  were raised in rabbits and the inhibitory effects of the antibodies on the  $P_i$ -binding activities of proteins  $F_1$  and  $F_2$  and on the  $F_i$ -uptake by whole cells are now reported.

#### 2. Materials and methods

#### 2.1 Obtaining the proteins

Candida tropicalis (strain 101) was grown as in [2]. Cells in exponential growth phase were incubated for 3 h in a medium lacking P<sub>i</sub> [2], in order to stimulate the ability of the cells to take up P<sub>i</sub>, and then subjected to a modification [3] of the cold osmotic shock procedure [4]. Cells (generally 30 g dry wt) were suspended (1 g dry wt/50 ml) in an hypertonic medium (20% sucrose, 1 mM EDTA, 30 mM Tris-HCl (pH 7.5) at 32°C for 15 min, centrifuged and resuspended in distilled water (1 g dry wt/50 ml) at 4°C for 15 min. After centrifugation, the shock fluid was recovered and clarified by filtration. Proteins present in the shock fluid were precipitated with  $(NH_4)_2SO_4$  (65% saturation) in the presence of 50 mM Tris—HCl buffer (pH 7.5) containing 0.01% NaN<sub>3</sub> and collected by filtration through a millipore membrane filter (0.22  $\mu$ m). The proteins were dissolved in

0.5 M Tris—HCl (pH 7.5) containing 0.1% NaN<sub>3</sub> and 0.25 M urea and dialysed overnight against buffer I (50 mM Tris—HCl (pH 7), 0.25 M urea, 1 mM KCl, 1 mM MgCl<sub>2</sub>, 0.04% NaN<sub>3</sub>). Proteins were concentrated on an Amicon membrane filter (minicon concentrator B15).

## 2.2. Measurement of $P_i$ -binding capacity

The proteins were layered on a Sephadex G-150 column (85 ml gel) pre-equilibrated with buffer I. The column was eluted and 1.6 ml fractions collected. The fractions exhibiting P<sub>i</sub>-binding capacity were pooled and concentrated by dialysis, using a minicon concentrator B15. P<sub>i</sub>-binding capacity was measured as follows: an aliquot of proteins (0.200 ml) was incubated with <sup>32</sup>P for 15 h at 4°C or for 25 min at 32°C in buffer I, loaded on a Sephadex G-25 column (12 ml gel) and eluted. Fractions (0.5 ml) were collected and assayed for protein content (A<sub>280</sub>) and radioactivity (Čerenkov method; Intertechnique SL 40 Scintillator).

## 2.3. Purification of the $P_{i}$ -binding proteins

The fractions, obtained by filtration through Sephadex G-150 and showing  $P_i$ -binding capacity were loaded onto a DEAE-cellulose (Whatman, DE 52) or a DEAE-sephacel (Pharmacia Fine Chemicals) column equilibrated with 20 mM Tris—HCl (pH 7.25) containing 0.1% NaN<sub>3</sub> and eluted with a 300 ml linear KCl gradient in the same buffer. 'Fraction 1' ( $F_1$ , eluted at 0.050 M KCl) and 'fraction 2' ( $F_2$ , eluted at 0.060 M KCl) were pooled and concentrated. They were either resuspended in buffer I, or in 50 mM Tricine buffer (pH 7). In the first case, fractions 1 and 2 were assayed for  $P_i$ -binding activity or layered on a Sephadex G-150 column to achieve purification.

In the second case, the proteins were used to stimulate  $P_{i}$ -uptake in osmotically shocked cells.

## 2.4. Preparation of antisera and antibodies

Proteins F<sub>1</sub> and F<sub>2</sub> after purification were injected into 2 rabbits at 3 time intervals (300 µg at each injection, in 50 mM tricine buffer, pH 7). After 3 months, the rabbit sera were tested for the presence of antibodies. Antisera used in the transport experiments were prepared as follows: the antisera were layered on a Sephadex G-25 column and eluted with buffer I, then concentrated, resuspended in 50 mM MES-KOH buffer (pH 6.5) and kept in a cold room for 2 or 3 h. Control rabbit serum was treated similarly. The antibodies were precipitated with (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (40% saturation), dialyzed overnight, concentrated and resuspended in a buffer (ethylenediamine-Na 20 mM (pH 7), 0.04% NaN<sub>3</sub>) and kept in a cold room.

### 2.5. P<sub>i</sub>-uptake by yeasts

All experiments on  $P_i$ -uptake were done with cells pre-incubated for 2 or 3 h in a  $P_i$ -depleted medium.  $P_i$ -starved cells were centrifuged, rinsed and 2 kinds of experiments were then performed:

- (i) Cells were subjected to the usual cold osmotic shock, then incubated for 15 min at 4°C in the presence of P<sub>i</sub>-binding proteins eluted from DEAE-Sephacel (see section 2.3). P<sub>i</sub>-binding proteins (1 mg) in 50 mM tricine buffer (pH 7), containing 4 mM MgCl<sub>2</sub>, were added to cells (3 mg) dry wt) in the same tricine buffer (final vol. 1 ml). The suspension was diluted 10 times in the uptake medium (50 mM MES-KOH (pH 6.5), glucose 5 g/l). The control without P<sub>i</sub>-binding proteins was also incubated for 15 min at 4°C, in the presence of 4 mM MgCl<sub>2</sub> in 50 mM tricine buffer (pH 7). After shaking for 5 min, radioactive P<sub>i</sub> was added (final conc. 5 × 10<sup>-5</sup> M).
- (ii) Cells were suspended for 10 min at 4°C in MES—KOH buffer (50 mM, pH 6.5) in the presence of 0.2 ml of antisera or control serum (final vol. 0.4 ml). The cell suspension was diluted 10 times in the uptake medium (50 mM, MES—KOH or Hepes—KOH at different pH values, plus glucose 5 g/l). After shaking for 5 min, radioactive P<sub>i</sub> was added (final conc. 5 × 10<sup>-5</sup> M).

After the introduction of radioactive  $P_i$ , 0.5 ml cell suspension was withdrawn and filtered through a Sartorius membrane filter (3  $\mu$ m). The radioactivity of the samples was measured (Čerenkov method).

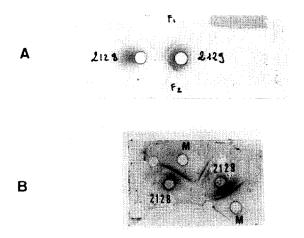



Fig.1. (A) Ouch terlony immunodiffusion test of  $P_i$ -binding proteins: 2128 (antiserum  $F_1$ ); 2129 (antiserum  $F_2$ );  $F_1$  and  $F_2$  proteins purified as described in the text. (B) Ouch terlony immunodiffusion test of the protein mixture before purification (M).

#### 3. Results and discussion

Fig. 1 shows the reaction of antisera against protein  $F_1$  and the partially purified preparation  $F_2$ , and also against the unpurified proteins mixture. As expected, in Ouchterlony tests antiserum  $F_1$  reacted with protein  $F_1$ , and antiserum  $F_2$  with  $F_1$  as well as  $F_2$ .

The effect of antibodies on the binding activities of proteins  $F_1$  and  $F_2$  was investigated. Fig.2 shows

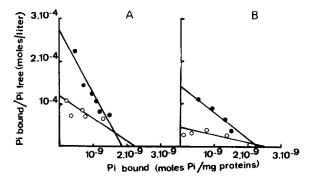



Fig. 2.  $P_i$ -binding capacity of proteins eluted from a DEAE-Sephacel column (see text) as a function of  $P_i$ -concentration (expressed in mol/1), Eadie-Scatchard plot). (A)  $P_i$ -binding capacity of fraction 2 in the absence ( $\bullet$ ) or in the presence of antibody  $F_2$  ( $\circ$ ). (B)  $P_i$ -binding capacity of fraction 1 in the absence ( $\bullet$ ) or in the presence of antibody  $F_1$  ( $\circ$ ). In these experiments, the proteins released by osmotic shock after concentration were directly eluted from a DEAE-Sephacel column (see text). The dilution of antibodies used was 1/10.

that the antibodies inhibited the ability of proteins to bind  $P_i$ . The control serum did not affect the binding. Similar results have been obtained with *Escherichia coli*  $P_i$ -binding protein [5].

The effect of antisera  $F_1$  and  $F_2$  on  $P_i$ -uptake by whole,  $P_i$ -starved yeast cells at different external pH values are shown in fig.3. Antiserum  $F_1$  decreased the  $P_i$ -uptake at neutral pH and exhibited only a slight inhibitory effect at acidic pH; the reverse was true for antiserum  $F_2$ . It must be remembered that this anti-

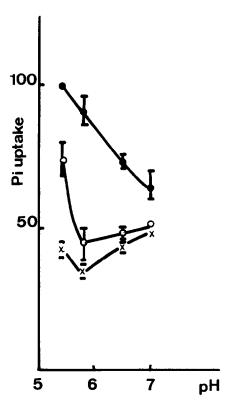



Fig. 3. Effect of antisera  $F_1$  (0) and  $F_2$  (X) on  $P_i$ -uptake by  $P_i$ -starved yeast cells (initial velocities) at different external pH values. Control curve (•). The results are expressed in % of the control;  $P_i$ -uptake at pH 5.4 was taken as 100 (maximal  $P_i$ -uptake as a function of pH). The controls in all cases contained a control serum. Cells (0.2 mg dry wt) were incubated for 10 min at 4°C, in MES-KOH buffer (50 mM, pH 6.5), in the presence of 0.2 ml antisera or control serum. The cell suspension was diluted 10 times in the uptake medium (50 mM MES-KOH or Hepes-KOH at different pH-values, plus glucose 5 g/l). Averages of  $\geqslant$ 4 expt are presented. Centrifugation after incubation with antisera did not change the results.

serum contained two antibodies,  $F_1$  and  $F_2$ , as shown in fig.1.

Proteins  $F_1$  and  $F_2$  added to shocked cells (see section 2) were found to stimulate  $P_i$ -uptake (control 100%,  $F_1$ ; 145 ± 12%,  $F_2$ ; 125 ± 12%, av. 10 expt). The order of magnitude of stimulation of  $P_i$ -uptake was similar to that observed in E. coli [5]. Several attempts to restore  $P_i$ -uptake in protoplasts were not successful and only a very short transient stimulation was observed (not shown). This is in contrast to the results obtained on  $P_i$  and ribose uptake by E. coli spheroplasts. However,  $P_i$ -binding proteins were released during protoplast formation, since the presence of  $P_i$ -binding proteins in the supernatant of protoplast preparations was demonstrated by immunological tests (not shown).

These results suggest that proteins  $F_1$  and  $F_2$ , able to bind  $P_i$ , are involved in  $P_i$ -uptake in vivo. The  $P_i$ -binding proteins were found to stimulate  $P_i$ -uptake in shocked cells. Also, antisera  $F_1$  and  $F_2$  inhibited  $P_i$ -uptake by whole cells. Thus, it seems reasonable to conclude that the  $P_i$ -binding proteins are located near the cell surface. Furthermore, these findings, together with the evidence for a  $P_i$ -uptake system acting at neutral pH in Saccharomyces [8], lend support to a concept that protein  $F_1$  plays a role in  $P_i$ -uptake at neutral pH whereas protein  $F_2$  may be involved in  $P_i$  transport at acidic pH (pH 5.2–5.4, the physiological pH for growth) in the yeast Candida tropicalis.

#### References

- [1] Jeanjean, R. and Fournier, N. (1979) FEBS Lett. 105, 163-166
- [2] Blasco, F., Ducet, G. and Azoulay, E. (1976) Biochimie 58, 351-357.
- [3] Wiley, W. R. (1970) J. Bacteriol. 103, 656-662.
- [4] Neu, H. C. and Heppel, L. A. (1965) J. Biol. Chem. 240, 3685-3692.
- [5] Medveczky, N. and Rosenberg, H. (1970) Biochim. Biophys. Acta 211, 158-168.
- [6] Gerdes, R. G., Strickland, K. P. and Rosenberg, H. (1977)J. Bacteriol. 131, 512-518.
- [7] Galloway, D. R. and Furlong, C. E. (1979) Arch. Biochem. Biophys. 197, 158-162.
- [9] Roomans, G. M., Blasco, F. and Borst-Pauwels, G. W. F. H. (1977) Biochim. Biophys. Acta 467, 65-71.